

Practical Advice on Dealing with the Issues From Glass in School Buildings

What are the problems?

Simple Solutions

.....to being too hot!

Standard double glazed windows allow almost 80% of the suns heat to enter the building.

Typical 'Sunny' Summer Day in the UK produces 500+ watts of energy per square metre at the windows.

In real terms you have the equivalent heat source of a 2 bar electric fire for every square metre of glass facing the sun.

High ambient temperatures in the centre of the classroom mean extremely uncomfortable conditions close to the window!

Simple Solutions

.....to being too hot!

What does this mean to you?

Double pane clear 30 °C CENTER OF ROOM 41 °C NEAR WINDOW COMFORT

Simple Solutions

	Existing Glazing:	With Window Film:			
Performance results	6mm Double clear	Sentinel Plus Silver 20 OSW			
Visible light					
Transmittance %	80	15			
Reflectance exterior %	15	62			
Reflectance interior %	15	55			
Glare reduction %	0.45%	82			
Solar energy					
Transmittance %	68	10			
Absorptance %	19	28			
Reflectance %	13	62			
Solar heat gain coefficient (G-value)	.74	.14			
Light to solar heat gain ratio (VLT/SHGC)	1.08	1.05			
Total solar energy rejected %	26	86			
Total solar energy rejected % @60*	21	84			
Solar heat gain reduction %	53	81			
Thermal energy		******			
Emissivity	.84	.76			
Winter U-factor (W/m ² °C)	2.8	2.8			
Winter heat loss reduction %	Y	0			
Ultraviolet light					
Blocked @ 300 to 380 nm %	57	>99			

Simple Solutions

.....to being too hot!

How can this be controlled?

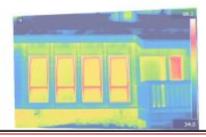
Too Cold?

Simple Solutions

.....to being too cold!


Standard double glazed window can allow almost 80% of the internal heat to leave the building.

Typical Winter Days in the UK produces a 20+° temperature gradient from inside to out.


The coldest parts of a room are normally close to the windows.

Increased heating rarely solves the comfort issue

Before

After

Too Cold?

Simple Solutions

	Existing Glazing:	With Window Film: Ecolux 70		
Performance results	6mm Double clear			
Visible light	404.0	2626		
Transmittance %	80	61		
Reflectance exterior %	15	18		
Reflectance interior %	15	7		
Glare reduction %	5/88	24		
Solar energy		4364		
Transmittance %	68	37		
Absorptance %	19	40		
Reflectance %	13	23		
Solar heat gain coefficient (G-value)	.74	.51		
Light to solar heat gain ratio (VLT/SHGC)	1.08	1.20		
Total solar energy rejected %	26	49		
Total solar energy rejected % @50"	21	58		
Solar heat gain reduction %		32		
Thermal energy	Ottober	55.500		
Emissivity	.84	.09		
Winter U-factor (W/m2°C)	2.8	2.1		
Winter heat loss reduction %		25		
Ultraviolet light	90.4	7		
Blocked @ 300 to 380 nm %	57	>99		

Winter	Single Pane		Double Pane			
	Clear	Ecolux 70	Clear	Ecolux 70	Low E	
Inner glass	-9 C	-13 C	7 C	0 C F	11 C	
Emissivity	0.84	0.09	0.84	0.09	0.84	
Feels like (at 3 ft)	17 C	21 C	19 C	21 C	20 C	

Too bright

Glass can be dangerous!

What makes a window (Glazing)

Window Constructions Glass Types Glass Strength Single Pane Annealed Clear Single Laminated Tinted **Heat-Treated** Single Low-e Reflective (Heat-Strengthene Double Pane d) Low-e **Double Laminated** Tempered Double Low-e Triple Pane Endless Possibilities....

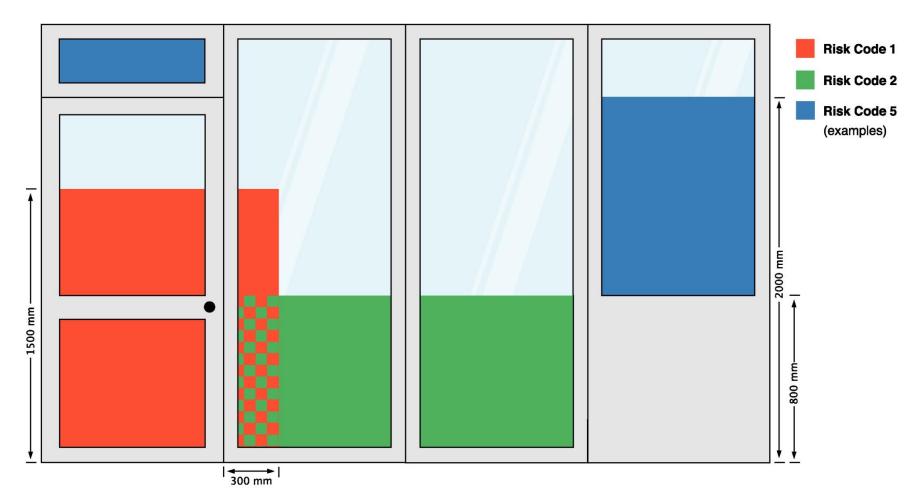
The Workplace (Health Safety and Welfare) Regulations 1992

Regulation 14

Every window or other transparent or translucent surface in a wall or partition and every transparent or translucent surface in a door or gate shall, where necessary for reasons of health and safety:

be of safety material or be protected against breakage of the transparent or translucent material and...

be appropriately marked or incorporate features so as, in either case to make it apparent.


The Five Steps to Compliance

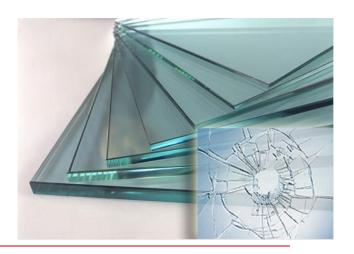
- a) Conduct a risk assessment of your glazing to determine whether or not there is a risk of injury. (Recommendations can be found in BS6262 Part 4).
- b) Ascertain the type of glass and its safety rating within those critical locations.
- c) Prepare a schedule of work to ensure that all glazing identified as unsafe for its location will be upgraded.
- d) Document both the assessment and the schedule of work.
- e) Monitor and review. (Ensure the schedule of work is completed and any subsequent reorganisation does not create a new potential risk).

The Reality of Risk Codes

Understanding Glass Types

Float – Annealed – Plate – Cast – Sheet

Toughened - Tempered - Heat Strengthened - Heat Soaked


Laminated

Georgian Wired Polished Plate – Georgian Wired Cast – Georgian Wired Safety

Types of glass - Annealed

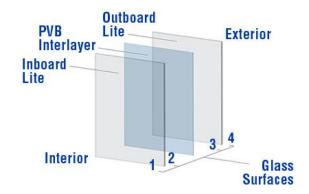
- Produced by floating molten glass on a bed of molten tin and allowed to cool slowly
- Weakest of all glass types
- Breaks into sharp, dangerous shards

Types of Glass - Tempered

- Produced by reheating annealed glass and quickly cooling it
- 4 times stronger than annealed glass

Breaks into small pieces reducing risk of personal injury.

personal injury


Meets EN12600

Types of Glass - Laminated

- Annealed Glass bonded together
- Cracks and deflects rather than breaks
- Meets EN12600

Window Film the Facts

Warranty/ Lifetime

Testing/Evaluation

Specification

RISK ASSESSMENT SURVEY DETAILS

EXAMPLE

Location of Glazing	Int Ext	No:	Width	Height	Risk Code	Glass Type	Safety Marked
FIRST FLOOR							
CLASSROOM MR1 25	E	1	26	42	1	L	N
SIDE PANEL	E	1	34	46	1	GWPP	
STAIRS MR1 256	E	2 2	26	12	5	ASF	N
STAIRS MR1 416	E		26	12	5	ASF	Y
EXIT DOOR BY MR1/32	E	1	23	39	1	L	N
OFFICE MR1/29	E	2	18	10	2 2	F4	
STAGE GANTRY	E	4	18	10	2	F4	1
GROUND FLOOR			100000			111111111111111111111111111111111111111	
EXIT OPPOSITE LECTURE THEATRE	E	4	20	11	1	T	Y
KITCHEN DOORS	E	4	12	13	1	GWS	Y
KITCHEN DOORS		2	17	17	1	GWS	N
FOYER MRG/01A	1	4	20	12	1	ASF	Y
EXIT BY MRG 20 (FILM EXTERNALLY)	E	2	29	12	1	GWC	EXT
MRG 24 KASSAM 1AB	E	2	24	41	1	T	N
DOORS AND SIDES	E	2	17	44	1	T	Y
DOOR	E	1	24	41	1	L	Y
BALUSTRADES	E	24	33	44	3	Т	Y
GYM ENTRANCE	E	4	21	11	1	GWC	EXT
HIGH LEVEL IN SHOWER AREA	E	6	34	18	4	F4	
I. NO ACCESS REQUIRED							
2. CHANGE EXTERNAL FACING ASF VERY							
OLD AND DEGRADED							
3. INTERNAL FACING ASF STILL VALID							

Accuracy is subject to change. Please see additional comments page

9/19/06 Glass Audit example 19 Sept.xfs

Too Bare?

Simple Solutions

......to using your glass in a practical way!!

The Way Forward

- Free no obligation surveys
- Full Documented Risk Assessments available.

 Audit existing film specification and performance.

www.solartekfilms.com 0207 183 5563 enquiries@solartekfilms.com

Ben Hickling Managing Director David Purves Sales and Marketing Bob Washer Business Development

Any Questions?